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LIQUID TRAPPING ON CYLINDER EXTRACTION 

V. I. Baikov, Z. P. Shul'man, and K. Engelhardt UDC 532.516 

It is important to know the thickness of the film of liquid formed on a cylindrical body, 
for example in depositing insulation on wires and also in the production of glass and syn- 
thetic fibers. The theory of [1-3] is restricted to low extraction velocities. The approach 
considered below is applicable to a very wide velocity range. 

i. Consider a cylinder of radius R extracted at a constant velocity U from a suffi- 
ciently large volume of liquid (Fig. i). The thickness of the film remaining on the surface 
is determined by the interaction between the internal friction, the mass forces, and the sur- 
face tension. The effect of these forces on the trapping are determined primarily by the ex- 
traction speed and the properties of the medium. 

The liquid in the film is simultaneously extracted by the cylinder and flows under grav- 
ity back into the bath. Therefore, at the surface of the film there should be a stagnation 
line, where the flow direction reverses. The stream lines passing through this separate the 
part of the liquid carried by the cylinder from the rest in the bath. We write the equations 
of motion for each of these regions and find the condition for linking up the solutions. 

2. We set the z axis along the flow parallel to the cylinder axis, while the r axis is 
perpendicular to it and passes through the stagnation line. The region of entrainment is 
bounded from below by a plane perpendicular to the axis of the cylinder and passing through 
the stagnation line, while upwards it passes into the region of constant film thickness ho = 
$o -- R. Physical considerations show that the characteristic dimension L of this region con- 
siderably exceeds ho, i.e., ho/L = e << i. 

We write the Navier--Stokes equations and the boundary conditions for the extraction re- 
gion: 
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v---- u ~ at r = ~, ( 2 . 4 )  
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I[ I, 
Fig. i 

where z and r are cylindrical coordinates; u and v, velocity components along the z and r 
axes, respectively; p, pressure; po = const, pressure in the gas; P, density~ ~ and ~, dynam- 
ic and kinematic viscosities, respectivelyl g, acceleration due to gravity; ~, surface ten- 
sion; and ~, radius of the free film surface. 

Equations (2.2) express the absence of tangential and normal stresses at the surface of 
the film, while (2.4) is the usual kinematic condition at the free surface. We take the 
thickness of the extracted film as comparable with the radius of the cylinder R. We intro- 
duce the following dimensionless quantities: 

u* = u / U ,  v* = v leU,  z* = ez lR ,  r* = r/R,; p* ~ p a / ~  

Ca = >U z, Go = B(pg12z)17,  7 = (oi/p)(gv4)-l/a, a = (2zlpgP/~. 

Here Ca is the dimensionless extraction velocity; Go, Goucher number; a, capillary constant; 
and y, parameter relating the physical properties of the liquid. We neglect terms of order 

~= in (2.1)-(2.4) to get 

Ou &, t ap v a (r  aV" ~ (2.5) 
u-Vi-  + v or 0 o~ g + - F - 7 - F  W-~ 

6r = ~  r Or ' ~7-~ + - 7 - ~  ( 2 . 6 )  

d~ 1 = 2 ~-- 3 (rv) at r = ~, or = 0 
p - p 0 +  e dz ~ ~ r - Or - ( 2 . 7 )  

at r = ~. 

The b o u n d a r y  c o n d i t i o n s  o f  ( 2 . 3 )  and  ( 2 . 4 )  r e m a i n  u n c h a n g e d .  The i n e r t i a l  t e r m s  i n  ( 2 . 5 )  a r e  
3/2 of  o r d e r  eCaGoy and  may be  of  o r d e r  e o r  l e s s  i n  a c c o r d a n c e  w i t h  t h e  v a l u e s  o f  Ca,  Go, 

and  ~ .  We i g n o r e  them i n  wha t  f o l l o w s .  

We i n t e g r a t e  ( 2 . 6 )  and  u s e  ( 2 . 7 )  to  g e t  

t a(rv~ I a(rv) - - o  (2.8) 
P - -  Po = ~t r Or + ~ Or ~=~ dz~ $ 

We substitute (2.8) into (2.5) and discard terms of order E 2 to get the final equations for 

the extraction region: 

r ar k O r ] + T k ~ z 3  q - -~ -~- z  _- -g=O;  (2.9) 

0u I 0(rv) _ O; (2.10) 
0--7- + r 0 ~  

u = U  at r = R ,  &_2L=0 at r = ~ ,  v = u T  at r = ~ .  ( 2 . 1 1 )  
Or 

The e q u a t i o n  o f  c o n t i n u i t y  ( 2 . 1 0 )  i s  r e p r e s e n t e d  i n  i n t e g r a l  f o r m ,  f o r  w h i c h  p u r p o s e  we 
a v e r a g e  ( 2 . 1 0 )  w i t h  r e s p e c t  t o  r f rom R to  ~ and  a l t e r  t he  o r d e r  o f  d i f f e r e n t i a t i o n  and  i n -  
t e g r a t i o n ,  u s e  t h e  s e c o n d  c o n d i t i o n  i n  ( 2 . 1 1 ) ,  and  i n t r o d u c e  t h e  l i q u i d  f l o w  r a t e :  

Q = 2a  S rudr,  
R 
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which gives 

~ X  rudr= oz 2~ ao = O. 
R 

Consequently, we have Q = const for the flow rate. 

Double integration of (2.9) and satisfaction of the boundary conditions of (2.11) gives 

where 

For Q we get 

u = U - - - -  ~ r ~ ) An~ 2 ~ l n - T f  + i  
4p. --  ~ ' 

, #)  . 

(2.12) 

Q UBZ ~ ARa ~4 ~ 354 + R~ (2.13) 

All the derivatives of the film thickness with respect to z are zero in the region of con- 
stant thickness, and then 

) Q UR~ ( ~ - - 1  ln~~ ~ + B~ 4 
2--~- = T ~ B z 4Ix . // 4R 4 

We d e r i v e  t he  p o s i t i o n  o f  t he  s t a g n a t i o n  l i n e  I s .  By d e f i n i t i o n ,  a t  t h a t  l i n e  the  s u r -  
f a c e  v e l o c i t y  o f  t h e  f i l m  Ulr= ~ i s  z e r o ,  w h ich ,  f rom ( 2 . 1 2 ) ,  g i v e s  

AB= = U 2 In • 
4~ B2 ~- t 

and from (2.13), 

z---f =-T- -~r i - -  

Equation 
lated by 
line. 

+ (2.15) 
R 2 4 " 

Substitution of (2.14) into (2.13) and conversion to dimensionless variables and param- 

eters 

H =  ~/R, x = z / R , H ~  = ~s/R, S = ~o/R, Ca = ~U/~, (2 .16 )  
Go ~ R(pg/26)t/~ 

results in an ordinary nonlinear differential equation for the film thickness in the extrac- 

tion region: 

dart i dH 8 ( C a S i - - H ~ ) - - i G o i ( 4 S i l n S - - 3 S 4 + 4 S ~ - - I )  + iGo~" (2 .17 )  
dxa H a dx + 4H~lnH--3Ha+4H 2 - i  

This is true in the range in H from S to Hs, which is determined from (2.15) in dimensionless 

form: 

3H~ +4H~ --~ S 2 _  ~~ ( 4 S ~ l n S - - 3 S 4 + 4 S i - - l ) .  (2 .18 )  H ~ 4 H ~ l n H ~ _  4 z 

Three arbitrary constants appear on integrating (2.17), which can be found from the con- 

ditions 

dH_.+ diH---'rO for x -+o o .  H - +  S, ~ O, dx---- T 

(2.17) contains also the unknown quantity S or 5o in dimensional form, which is re- 
(2.14) to Q. To determine this we consider the flow region below the stagnation 

3. Here the characteristic speed of the liquid is less than the plate extraction rate, 
while the characteristic scale of the liquid motion is much greater than the thickness of the 
extracted film for the case of a wide and deep bath. Therefore, the spatial derivatives of 
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the velocities will be much less than in the extraction region, and they can be neglected in 
(2.1)-(2.4). Then the surface shape is defined by the Euler relations 

with the boundary condition 

P o - - P  = 

a p / @  + pg = o, ap/ar  = o (3.1) 

2~[ I d~ '2',-~ + }  
- ( 3 . 2 )  

Here the y coordinate coincides with the z axis but is reckoned from the horizontal surface 
of the liquid in the bath. From (3.1) and (3.2) we get 

3 I 

[I + r  [ ; 'i"i o. 
d~ ~ l e~ ] l 7 -  t + l eu ] ] = o u, 

(3.3) 

which coincides with the equation for the shape of the liquid surface under static-meniscus 
conditions. The solution to (3.3) should be sought with the boundary conditions 

d~/ dy = 0 ~ r  y = b, d~/ dy -+ - -oo  for y - > 0 ,  ( 3 . 4 )  

where  b i s  t he  h e i g h t  to  which  t he  l i q u i d  r i s e s  on t h e  s u r f a c e  o f  the  c y l i n d e r  u n d e r  t he  
a c t i o n  o f  t h e  c a p i l l a r y  f o r c e s .  N u m e r i c a l  i n t e g r a t i o n  o f  t h e  b o u n d a r y - v a l u e  p rob lem o f  ( 3 . 3 )  
and ( 3 . 4 )  f o r  an immobi le  c y l i n d e r  has  g i v e n  [4] t h e  e m p i r i c a l  f o r m u l a  

i 

t + 2.4 Go ~ ' 

which gives an error of 1% for Go = 3 and which decreases as Go decreases. When the cylinder 
moves, one has to allow for the effects of the extracted film on the shape of the static 
meniscus surface. We assume that the static meniscus is attached not to the solid wall but 
to a liquid film of thickness ho = ~o -- R, which means that in determining the maximum height 
of rise b one should take ~o instead of R as the radius of the cylindrical body. Then for 
the static meniscus on extraction 

1 

i + 2,4 (Go S) ~ " (3.5) 

Then the problem of (3.3) with (3.4) and (3.5) is converted from a boundary-value problem 
into a Cauchy one. The solution is readily found by numerical integration. 

4. To link up the solutions of (2.17) and (3.3) we specify that the normal stresses 
acting from the liquid on each of the flow regions are equal on the stagnation line ~s, i.e., 
we equate the right sides of (2.8) and (3.2). As the first term on the right in (2.8) has 
the same order of smallness along the stagnation line as the terms discarded in (3.2), it 
should be deleted. Then, 

or in dimensionless form on the basis of (2.16) and (3.3) 

( d:g  I ) = 2 Go2xl[H=~s, (4 .1 )  
dx ~ H H=H$ 

where  x l  = y /R .  

Then t he  scheme f o r  s o l v i n g  t he  p rob lem i s  as  f o l l o w s .  We s p e c i f y  Ca and Go and choose  
a c e r t a i n  v a l u e  f o r  S, and use  Newton ' s  method w i t h  (2 .18 )  to  f i n d  Hs. Then we s o l v e  (2 .17)  
and (3 . 3 )  n u m e r i c a l l y  by t h e  Runge--Kutta method and d e t e r m i n e  (d2H/dx 2 -- 1/H) l H = H s f r o m  
(2 .17 )  and t he  v a l u e  o f  x a t  which  H = H s f rom ( 3 . 3 ) ,  and t h e n  check  f o r  o b e d i e n c e  to  ( 4 . 1 ) .  
Simple i t e r a t i o n  g i v e s  t he  v a l u e  o f  S o b e y i n g  t h i s  r e q u i r e m e n t  w i t h  g i v e n  Ca and Go. F i g u r e  
2 shows the  r e s u l t s ,  where  the  o r d i n a t e  i s  t h e  d i m e n s i o n l e s s  f i l m  t h i c k n e s s  
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Fig. 5 

To = (~o - R ) ( p g / ~ U ) V i  

which is related to the dimensionless film radius S by 

�9 T o  = ( S  - -  i)(2/Ca)l/2Go. 

In  e x p e r i m e n t s ,  one o f t e n  measures  n o t  t he  f i l m  t h i c k n e s s  ho = go -- R, bu t  the  l i q u i d  
f low r a t e  Q, and the  t h i c k n e s s  i s  t a k e n  as  f low t h i c k n e s s  h~ 

~(hoo ~- R )  ~ - -  ~ R  2 = Q / U .  

Then from (2 .14)  and ( 1 . 1 6 ) ,  

We i n t r o d u c e  the  d i m e n s i o n l e s s  f low t h i c k n e s s  T = h~(pg/tJU) ~/a, so 

[TG~ tP = S~-- G~ ( S ~ l n S -  3-$" $4 + $2--  + ) -  

F i g u r e s  3-5 compare the theoretical and experimental results taken from [3, 5], which 
show good agreement throughout the ranges of extraction speeds used in the experiments. 
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